01

НТЦ «АЛЬФА-1»

СОГЛАСОВАНО	УТВЕРЖДАЮ
Главный конструктор	Генеральный директор
АО "НИИП им. В.В. Тихомирова"	ООО «НТЦ «Альфа-1»
О.В. Малинин	С.Г. Алякринский

МОНОБЛОК МА900-19

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ ГВАЛ.464411.049РЭ

Листов 20

Главный инженер
ООО «НТЦ «Альфа-1»
С.И. Фролов

Содержание

	Введение	3
1	Описание и работа прибора	3
1.1	Назначение	3
1.2	Технические характеристики	5
1.3	Состав	5
1.4	Устройство и работа	6
1.4.1	Внешний вид прибора	6
1.4.2	Включение прибора	8
1.4.3	Управление режимом работы прибора	9
2	Техническое обслуживание	12
2.1	Общие указания	12
2.2	Меры безопасности	12
2.3	Порядок технического обслуживания	13
2.4	Проверка работоспособности	13
3	Маркировка и пломбирование	14
4	Упаковка	14
5	Транспортирование и хранение	14
6	Утилизация	14
	Приложение	16
	Лист регистрации изменений	20

Настоящее руководство по эксплуатации (РЭ) содержит сведения о назначении и составе моноблока RFID UHF MA900-19, его конструкции и технических характеристиках, а также устанавливает правила эксплуатации прибора, соблюдение которых обеспечивает поддержание его в постоянной готовности к действию.

К работам с прибором допускается обслуживающий персонал, знающий конструкцию прибора и порядок работы с ним. При работах с прибором необходимо соблюдать все требования настоящего РЭ.

1 Описание и работа прибора.

1.1 Назначение.

- 1.1.1 Моноблок MA900-19 (далее прибор) входит в системы «СКИФ-М» и используется в вагоне метро серии 81-765 и их модификаций.
- 1.1.2 Прибор предназначен для бесконтактного дистанционного считывания информации из радиочастотной метки RFID UHF стандарта ISO-18000-6B (PM) и передаче ее по проводному интерфейсу в контроллер или компьютер.
- 1.1.3 Прибор предназначен для эксплуатации в следующих условиях воздействия:
- рабочих температур в диапазоне от 232 до 323 K (от минус 40 до плюс 50 °C);
- предельных температур в диапазоне от 223 до 333 K (от минус 50 до плюс 60 °C);
- циклического изменения температуры окружающей среды от предельной пониженной 223 К (минус 50 °C) до предельной повышенной 333 К (плюс 60 °C);

- относительной влажности воздуха 100% при 25 °C;
- синусоидальной вибрации в диапазоне частот от 5 до 200 Гц с амплитудой ускорения 10 м/c2 (1 g);
- механических ударов одиночного действия с длительностью от 10 до 60 мс и пиковым ударным ускорением до 29 м/с2 (3 g);
- механических ударов многократного действия с длительностью от 1 до 3 мс и пиковым ударным ускорением до 29 м/с2 (3 g);
 - линейного ускорения с амплитудой до 49 м/с2 (5g).

1.2 Технические характеристики

- 1.2.1 Внешний вид и расположение разъемов прибора приведены на рисунке 1.
 - 1.2.2 Масса прибора не более 2,3 кг.
 - 1.2.3 Габариты прибора не более 292×264×107 мм.
 - 1.2.4 Основные характеристики прибора приведены в таблице 1.

Таблица 1

Наименование параметра,	Значение
единица измерения	параметра
1 Частота выходного сигнала, МГц	867±0,017*
2 Максимальная мощность выходного сигнала (ЭИМ), Вт	2 *
3 Ширина ДН антенны, градусов	60×70
4 Напряжение питания, В	5085 B
5 Ток потребления от источника, мА	не более 300
6 Время непрерывной работы, час/сутки	24

^{*} в соответствии с «Приложениями к решению ГКРЧ от 28.04.2008 № 08-24-01-001»

1.3 Состав.

1.3.1 Прибор состоит из составных частей, перечисленных в таблице 2.

Таблица 2

Обозначение	Наименование	Маркировка	Колич.	
ГВАЛ.464411.049	ВАЛ.464411.049 Моноблок МА900-19		1	

1.4 Устройство и работа.

1.4.1 Внешний вид прибора.

Внешний вид прибора представлен на рисунке 1.

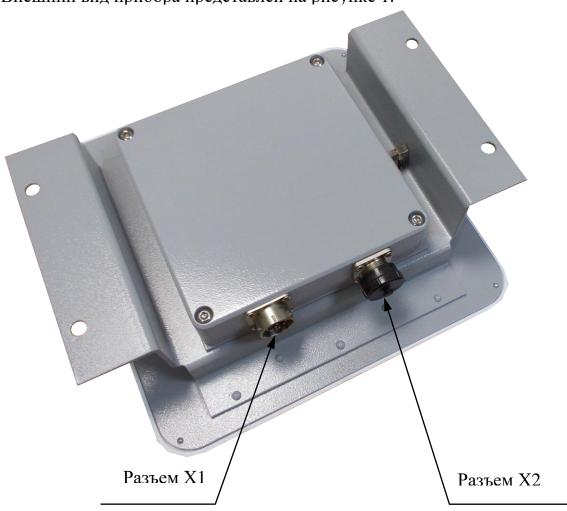


Рисунок 1. Внешний вид и расположение разъемов прибора.

Прибор имеет металлический корпус, на боковой стенке которого расположены блочные разъемы типа 2РМГ и СНЦ28. Крепежные отверстия расположены на специальных кронштейнах.

Габаритный чертеж прибора приведен на рисунке 2.

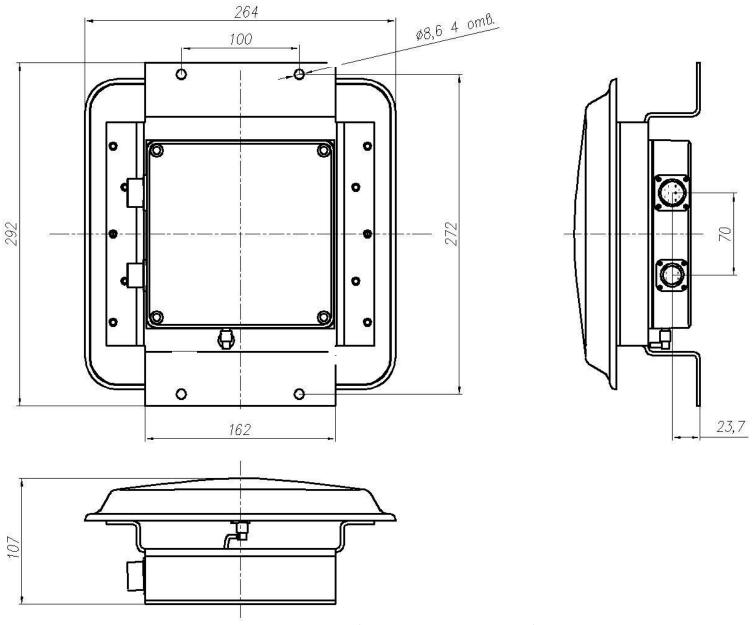
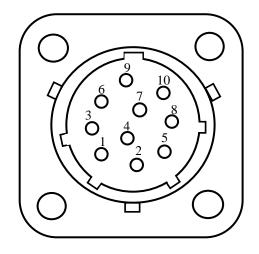
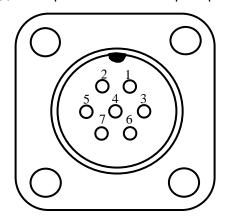



Рисунок 2. Габаритный чертеж прибора.

1.4.2 Включение прибора.

Для подключения ридера необходимо присоединить к разъемам кабели с соответствующими разъемами. Схема подключения приведена на рисунке 3.


Вид со стороны контактов прибора

X1

Конт.	Цепь
1	+75V1
2	+75V2
3	GCAN1
4	CANH1
5	CANL1
6	GCAN2
7	CANH2
8	CANL2
9	OV(+75V)2
10	OV(+75V)1

Вид со стороны контактов прибора

X2

Конт.	Цепь
1	GND
2	SCLK
3	MISO
4	VCC_5VDC
5	MOSI
6	MR
7	

Рисунок 3. Схема подключения прибора.

Подать питание на прибор. Через 0,3...1,3 с прибор выдает сообщение о готовности.

При этом прибор включается в режим работы, установленный по умолчанию:

- рабочая частота 867 МГц;
- мощность выходного сигнала минимальная (нет излучения);
- ожидание команды по каналу CAN.

1.4.3 Управление режимом работы прибора.

Электрическая принципиальная схема прибора приведена на рисунке 4.

Управление работой прибора производится по каналу CAN, разъем X1.

Прибор имеет в своем составе программируемый контроллер. Программирование контроллера осуществляется через разъем X2.

Электрическая принципиальная схема модуля питания и управления приведена на рисунке 5.

Для изменения режима работы модуля ридера используются следующие команды, поступающие от модуля питания и управления по каналу RS232:

- **RD_SNGL_UID** Чтение восьми последовательных байт данных по адресу внутренней памяти метки.
- **GET_SNGL_UID** Чтение уникального кода (UID) метки.
- **M_AUTO** Режим автоматического считывания UID метки и 8 байт данных с начального адреса 20h.
- **VERSION** Возвращает текущую версию ПО прибора.
- LOAD_CONTROL_UID Запись в память прибора UID контрольной метки.
- GET_CONTROL_UID Чтение UID контрольной метки.

Протокол обмена модуля ридера RMA900-9 приведен в приложении.

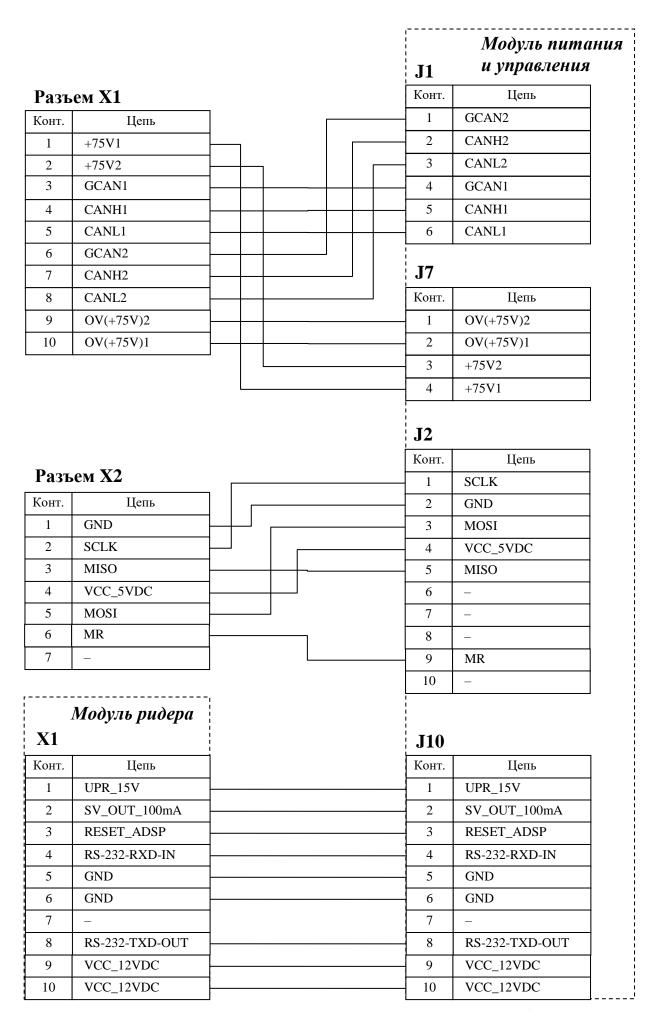


Рисунок 4. Схема электрическая принципиальная прибора.

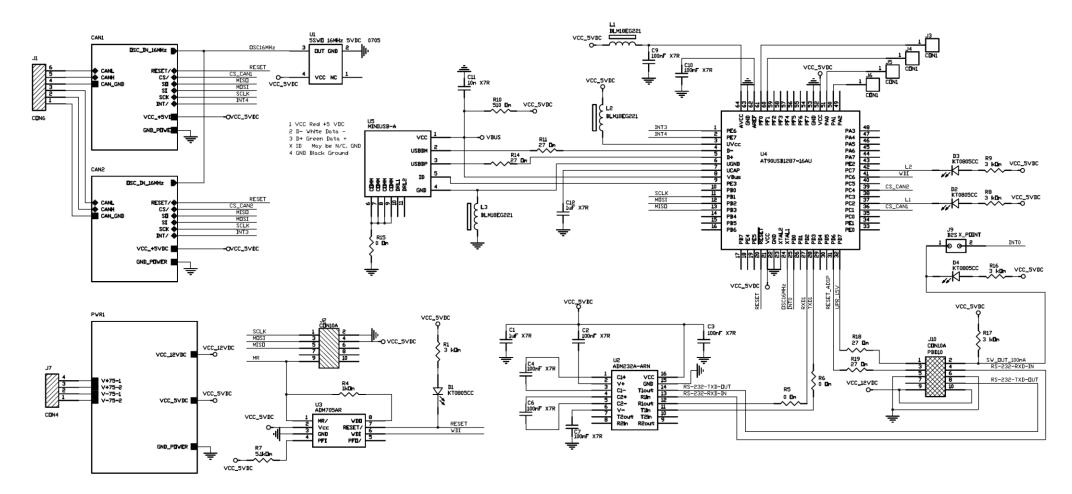


Рисунок 5. Схема электрическая принципиальная модуля питания и управления.

2. Техническое обслуживание

2.1 Общие указания

Техническое обслуживание прибора — это комплекс плановопредупредительных мероприятий по поддержанию его в постоянной готовности к немедленному применению и продлению срока эксплуатации.

Проведению технического обслуживания должны предшествовать тщательное изучение обслуживающим персоналом объема и методик выполнения работ предстоящего циклического обслуживания.

При техническом обслуживании необходимо провести следующие операции:

- проверить комплектность изделия;
- проверить наличие пломб;
- провести внешний осмотр изделия и подходящих к нему разъемов;
- провести проверку работоспособности изделия.

Внешний осмотр необходим для выявления различных дефектов и своевременного их устранения:

- ослабление крепежных элементов и соединений;
- нарушение стопорения крепежных элементов;
- повреждение деталей (вмятины, царапины, трещины, деформации).

Устранение повреждений и ремонт возможен в условиях завода – изготовителя или организаций с наличием соответствующего технологического оборудования.

2.2 Меры безопасности

Меры безопасности должны соответствовать нормативным требованиям ΓOCT 22261-94, правилам технической эксплуатации электроустановок потребителей, технической правилам безопасности при эксплуатации электроустановок потребителей, правилам технической эксплуатации метрополитенов.

Перед началом и по окончанию работ по техническому обслуживанию прибор должен быть проверен на функционирование.

Техническое обслуживание производится на исправных блоках, применяются только исправные инструменты и приборы.

2.3 Порядок технического обслуживания прибора

Порядок и виды технического обслуживания прибора в соответствии с таблицей 3 для вагонов серии 81-765 и их модификаций.

Таблица 3

Наименование работы (обслуживание, ремонт)	Обозначение	Периодичность проведения, км пробега (часы)		
Эксплуатационное обслуживание	ЭО	Один раз в сутки		
Техническое обслуживание	ТО	35000±8000		
Периодический ремонт первого объема	ПР-1	140000±23000		
Периодический ремонт второго объема	ПР-2	280000±46000		
Подъемочный деповский ремонт первого объема	ПДР-1	560000±83000		
Подъемочный деповский ремонт второго объема	ПДР-2	1120000±166000		
Заводской ремонт	3P	1680000±250000		

2.4 Проверка работоспособности

Проверка работоспособности прибора проводится в составе вагона согласно ТРДГ.466451.002РЭ или на испытательном стенде в соответствии с техническими условиями ГВАЛ.464411.049ТУ.

3 Маркировка и пломбирование.

- 4.1 Прибор имеет маркировку «МА900-19».
- 4.2 Маркировка потребительской тары с упакованным прибором выполнена в соответствии с ГОСТ 14192-77.
- 4.3 На потребительской таре линии соединения концов этикетки со стенками коробки опечатаны клеймом ОТК.

4 Упаковка.

- 4.1 Прибор упакован в картонную коробку из гофрированного картона, соответствующую требованиям ГОСТ 9142–90.
 - 4.2 В коробке также находятся лист упаковочный и паспорт прибора.
- 4.3 Перед распаковкой прибора, прибывшего с предприятия—изготовителя, упаковку очистить от пыли и грязи.

Распаковку прибора в зимнее время производить в отапливаемом помещении, предварительно выдержав упаковку в этом помещении не распакованной в течение 24 ч.

4.4 Проверку комплектности прибора проводить в соответствии с упаковочным листом.

5 Транспортирование и хранение

- 5.1 Прибор должен сохранять свои эксплуатационные характеристики после межзаводского транспортирования любым видом транспорта без ограничения расстояния.
- 5.2 Прибор должен сохранять свои эксплуатационные характеристики при хранении в складских не отапливаемых помещениях.

6 Утилизация

6.1 Изделие не содержит материалов и составляющих комплектующих,

представляющих опасность для здоровья и жизни людей, а также для окружающей среды после окончания срока службы (эксплуатации).

6.2 Утилизацию изделия осуществлять в соответствии с нормативными документами эксплуатирующей организации. При утилизации изделие не создает вреда и опасности окружающей среде и здоровью человека

Приложение.

<u>Протокол обмена команд модуля ридера RMA900-9</u> <u>с модулем питания и управления</u>

Общение с модулем ридера осуществляется в режиме интерпретатора команд, переданных через стык RS232.

Получив команду от ведущего контроллера прибор выполняет соответствующие действия и формирует ответ. При отсутствии ответа на корректную команду более 500 мс команду необходимо передать повторно. Некорректные команды игнорируются.

Скорость передачи данных фиксированная — 115,2 кБод в формате: 8 бит + 1 CTAPT-бит + 2 CTOП-бита.

ФОРМАТ КОМАНД

01h':NNNNNNNN COP P0 P1 P2 [P3.. P4] COMM CRC;'

01h- сетевой адрес прибора - любой байт от 00h до 0Fh (в случае единственного устройства в сети этот адрес должен иметь значение 01h), расценивается прибором как требование очистить входной буфер и приготовиться к приему очередной строки

":' - маркер начала командной строки

'NNNNNNN' - очередной номер команды - может принимать значения 00000000, 00000001,99999999. Этот номер будет присутствовать в ответе, сформированном прибором

'СОР' - команда

'P0 P1 P2 [P3.. P4]' - параметры команды

'COMM' - комментарий - игнорируется интерпретатором

- 'CRC' контрольная сумма получается суммированием байтовых значений выделенных символов строки
- ";" маркер конца командной строки получив этот символ, интерпретатор приступает к выполнению команды

TxD: - строка, передаваемая прибору

RxD: - ответ прибора.

ПЕРЕЧЕНЬ КОМАНД

M AUTO

Режим автоматического считывания UID метки и 8 байт данных, записанных в метку с начального адреса 20h.

M_AUTO TIME_MS

TIME_MS — период считывания метки, мс. Может иметь значение в интервале 10<TIME MS <10000 мс.

Включение режима:

TxD: :00000003 M_AUTO 100 1081; RxD: :00000003 M_AUTO ON;

Пример ответа при успешном автоматическом чтении UID метки и данных: RxD: :00000000 REC ID -16E21FFFC0113002 DAT -4E544320416C7068;

RxD: :00000001 REC_ID -16E21FFFC0113002 DAT -4E544320416C7068;

При отсутствии метки в зоне считывания – ответа нет.

Выключение режима:

TxD: :00000008 M_AUTO 0 989; RxD: :00000008 M AUTO OFF;

При нахождении ридера в режиме M_AUTO_ON подача любых команд кроме команды выключения режима ЗАПРЕЩАЕТСЯ.

LOAD CONTROL UID

Запись в память ридера UID контрольной метки.

LOAD_CONTROL_UID DATA

DATA - UID контрольной метки - 8 байт, пробел между байтами

Пример успешной записи UID контрольной метки в память ридера:

TxD: :00002628 LOAD_CONTROL_UID E0 04 0A 64 2D 01 00 00 2846;

RxD: :00002628 CONTROL_UID -E0040A642D010000;

GET CONTROL UID

Чтение UID контрольной метки.

Пример успешного чтения UID контрольной метки:

TxD: :00002629 GET_CONTROL_UID 1620;

RxD: :00002629 CONTROL_UID -E0040A642D010000;

GET SNGL UID

Чтение уникального кода (UID) метки. При успешном чтении размещает UID во внутреннем буфере и разрешает выполнение команд чтения/записи.

Пример успешного (достоверного) чтения UID метки:

TxD::00000117 GET_SNGL_UID 1373;

RxD: :00000117 REC_ID -15225FFFC0113001;

Если метка вне поля действия ридера:

TxD: :00000118 GET_SNGL_UID 1374;

RxD: :00000118 ERROR;

При недостоверном чтении метки (несовпадение контрольной суммы):

TxD: :00000118 GET_SNGL_UID 1375;

RxD: :00000118 ERROR CRC;

RD_SNGL_UID

Чтение восьми последовательных байт данных по адресу.

Команда может быть выполнена только после успешного выполнения команды GET SNGL UID.

RD SNGL UID ADDR

ADDR - начальный адрес для блока.

Пример успешного чтения блока из восьми байт с адреса 20h:

TxD: :00000020 RD_SNGL_UID 20 ADDR 2217;

RxD: :00000020 REC -11 22 33 44 55 66 77 88 A24A;

Ошибка чтения:

TxD: :00000021 RD_SNGL_UID 20 ADDR 2218;

RxD: :00000021 ERROR CRC;

VERSION

Возвращает текущую версию ПО модуля ридера.

TxD: :00000011 VERSION 968;

RxD: :00000011 BF_PROC_SRV Rev. RMA900-METRO V0.01b;

RxD: :00000011 Jan 24 2008;

RxD: :00000011 13:10:20;

Для справки:

После подачи питания примерно через 1 с прибор выдает в СОМ порт сообщение:

```
RxD: :00000000 BF_PROC_SRV Rev. RMA900-METRO V0.01b;
RxD: :00000000 Jan 24 2008;
RxD: :00000000 13:10:20;
RxD: :00000000 LBr(C)2007;
RxD: :00000000 BF_READY;
RxD: :00000000 UART_ADDR 0001;
RxD: :00000000 FREQ 0000867000;
RxD: :00000000 IN_ATT 0000000000;
RxD: :00000000 PWR_ATT 0000000000;
RxD: :00000000 CONTROL_UID 0000000000000;
```

Для конкретного модуля ридера значения параметров могут отличаться от приведенных.

	Лист регистрации изменений									
	Номера листов (страниц)			Всего		Входящий №				
Изм	изме- ненных	заменен-	новых	аннули- рованных		(страниц) в	документа	сопроводите	Под-пись	Дата